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ABSTRACT

Optical and magnetic properties of transition elements
(ndN and nfN ions) are re-analysed. The aim of the work
is to see up to where a unique set of phenomenological
parameters, those introduced in the crystal-ligand field
theory described on the la SLIM>> basis, can describe the
experimental data.

I — INTRODUCTION

The simulation of the energy level sequences of f
electrons has received great attention since thirty years.
After the pioner works of Racah in the forties, Stevens,
Wybourne, Judd and more recently Newman and others
have developed a complete set of mathematical tools,
known as the Racah algebra, to describe the main forces
which co-exist in a pluri-electronic system. *

The advantage of the rare earth ions and -less evidently-
of the actinide ions is the fact that the optically active f
electrons are not -or quite not- acting in the chemical
bonding. They are protected by an external electron
sheet. As a first consequence, only small differences exist
between the energy level of the free ion and the one
of the ion embedded in a cristalline matrix. Optical transi-
tions exhibit narrow lines, characterizing transitions
between electronic levels, with a small effect of vibronic
couplings. On the other hand, the important degeneracy
of the fN configurations and the great number of observed
levels authorize the theoretician to precisely analyse and
quantify the magnitude of various interactions through
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phenomenological parameters. It is also possible to test
ab-initio models, like for the crystal field.? Simulations
yield rms deviations lower than 20 cm™' by using about
20 phenomenological parameters, the order of magnitude
of many of them is known before the simulation and some
others have a second order influence.

The external d electrons of the 3dN series are both
“optical” and “bonding™ active, with many consequences:
enlargement of the optical bands due to phonon coupling,
doubt about zero phonon line positions, strong effect of
the ligand on both the crystal field strength and the overlap
between central ion and ligand wavefunctions and, finally,
a relatively poor energy level sequence. Of course, the
strengthof the interactions is different with a crystal field
20 times stronger, a spin-orbit coupling smaller, and also
less phenomenological parameters.

From these differences, the type of simulation changes.
The rare earthist takes into account up to ‘“‘exotical”
interactions whose order of magnitude is some wavenumber
units. The d-ist uses crude approximations in order to
diminue the number of interactions or, at least, the number
of parameters. This is why the famous Tanabé-Sugano
diagrams were so successfully employed, with Slater radial
integrals F, and F; (B and C for the d-ist), fixed to
hydrogenic ratio, with spin-orbit often neglected and the
crystal field approximated to a cubic symmetry (Dg).
The symmetry sometimes is lowered by an additional
perturbation potential (D; and D). Thus, the basis of the
vectorial space (ISMgLMy > for the d’s and | SLIM> for
the f's), and even the name of the states (called from their
irreducible representation for the d, from the free ion states
for the f) is different.



Whatever the configuration and its description, a conse-
quence of the diagonalisation of the secular determinant is
an expression for the wavefunction associated to a given
energy level. It is necessary for magnetic propertys calcula-
tions, like g values, the paramagnetic susceptibility (or
effective moment) and its variation with temperature. For
f electrons, the application of the magnetic tensor L+g.S
on the wavefunction gives good simulation of the data.
For the d electrons, on the contrary, one has to modify
the operator for an a-posteriori correction of the oversim-
plified model for the energy level calculations (for example

“anisotropic reduction of the orbital moment”.?

I1 — THE INTERACTIONS

In the central field approximation the ground configura-
tion is supposed to be well isolated from the rest of the
configuration series, even if their influences are taken into
account. The degeneracy of the configuration is the number
of Slater determinants we can construct with all possible
combinations of angular moment m& and spin my quantum
numbers. Its value is (N=number of electron), (table 1):

, 2e+2)!
" (42-2-N)!
Number and | Num. of Terms Nums of levels Configuration
type of elec. a8+1y 3+ Degeneracy
1 (5 p 1 2 8
(9 p 3 5 15
3 P 3 5 20
1 (9 d 1 2 10
2 (8 d 5 9 45
3 (D d 8 19 120
4 (6) d 16 34 210
5 d 16 37 252
1 (13) f 1 2 14
2 (1) f 7 13 91
3 (a1 f 17 41 364
4 (10) f 47 107 1001
5 (9 f 73 198 2002
6 (8 f 119 295 3003
7 f 119 327 3432

Table 1. Splitting of configurations 2N as a function of the nature
of spectroscopic operators. When the symmetry is low,
the number of levels is equal to the degeneracy (respec.
half) for configurations with an even (respec. odd) num-
ber of electrons.

I1.1 — The free ion interactions

The first interaction corresponds to the energy separa-
tion between the ground configuration and excited ones.
The corresponding parameter is E, (or F,).

The other main interactions are (table 2):

— the electrostatic repulsion, HgrE, creating the spectrosco-

Interactions/Parameters NaN NN
Electrostatic repulsion Eo,Ef, E; Eq, E{,Ez, E3
or Fo, Fz, F4 or Fo, Fz, F4, F6
Spin-orbit coupling 3
Configurations interac. a, B,y o, 8,7
Three-body interactions not used T
Spin-spin interaction
Spin-other-orbit interac.] not used MKk = 0,24
Spin-other-orbit interac. not used pK k=2,4,6
(other configuration)
Crystal field
one electron Bkqk=2,4 Bxqk=2,4,6
two electrons ck k=24 ck k= 2,4,6

Table 2. Phenomenological parameters

pic terms 25*!L, with (28+1)(2L+1) as remaining
degeneracy.

— the spin-orbit coupling, Hyo, creating the spectroscopic
levels 2S”LJ, where J is the total angular momentum.
The remaining degeneracy is 2J+1.

Less important interactions are (by their orders of magni-
tude):

— electrostatic interactions, H, , between ground and exci-
ted configurations.

— three-body electrostatic interaction, H,, for configura-
tions having more than two equivalent electrons.

— magnetic interactions, H;, corresponding to the spin-
spin and spin-other-orbit relativistic corrections.

— two-body spin-orbit interactions, Hy , between different
configurations.

I1.2 — Crystal field interactions

When embedded in a crystalline matrix, the ion is
submitted to an electric potential, having the same symme-
try as the crystallographic ion point group. This interaction
lifts more or less completely the residual degeneracy of
the free ion, according to group theory rules. It creates
the crystal field levels 25*'Lyy (on the .a SLIM> basis).
Two types of crystal fields are considered (table 2):

— one-electron crystal field, H;cc,, with its electrostatic
origin.

— two-electron crystal field, H, ., taking into account a
spin dependence of the radial integrals.

Moreover, an external magnetic field, H,, can lift the ulti-
mate degeneracy, essentially for the ions with odd number
of electrons, and permits the determination of the Zeeman
factor g.

III — PARAMETRIZATION OF THE MAIN
INTERACTIONS

It is not possible to calculate exactly the effect of these
interactions, only their order of magnitude can be estima-
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ted. It is better to use a parametric method, where a
reduced number of phenomenological parameters, numeri-
cal coefficients of the application of the tensorial operator
equivalent to the interaction, permits to reproduce the
spectrum. Table 2 shows the parameters involved. Naturally,
the number of parameters depends on the configuration
(for the free ion parameters and for the crystal field para-
meters (cfp), and on the symmetry of the ion site (for the
cfp’s). However, the phenomenological parameters don’t
vary freely, because Hartree-Fock calculations for the
free ion parameters (table 3) or “ab-initio” models for the
crystal field (table 4) give only their order of magnitude.

Hartree PV

3+

Fock free ion LaCls - Pr
F, 98723. 72550. 68368.
| 61937. 53681. 50008.
Fg 44564. 36072. 32743.
¢ 820.2 769.9 744,
@ 28, 23.8 22.9
g —-615. —-613.2 —674.
¥ 1611. 6745.7 1520.
M° 1.99 1.59 1.76
p? - - 275.

Table 3. Comparison between calculated and experimental rare
earth free ion parameters (from W.T. Carnall, NATO
Summer School, Braunlage, Germany 1982). Units
inem™

II1.1 — Electrostatic repulsion

The matrix elements are written in a relatively simple
way only for two equivalent electrons:

< (n%)? SLIHRg | (n®)?SL>= Z fi (2,2) FX (n2,nQ)
k

where FX are the Slater integrals and

—(_1L (k) . 22k
@Y= (-1L<elc® i1g>? o) )

{ } is a 6j-symbol. For other configurations the matrix
elements are deduced from these elements by a recursion
method involving the fractional parentage coefficients.*
An alternative way is to consider the Racah free ion para-
meters Ey, linear combination of the Fy's.

II1.2 — The crystal field

In the Wybourne’s formalism*, the crystal field potential
is written as a sum of products of tensorial operators:

Hee= Z  Bkq(Ckqhi

k,q,i
In which C is the tensorial operator, having the same syme-
try rules as the spherical harmonics and B the phenomeno-
logical cfp’s. The sum runs over all electrons of the system.
For a D4y, symmetry the potential is:
Hah = B20Cz0 * Bag Cao + Bag (Cag + Cas)

When the symmetry is lowered to C,y, two more cfp’s are
involved: :

Hay = Hap + B3 (Ca2 +Ca.p) +Baz (Caz +C4.2)

On the la SLIM> basis the matrix elements are written
according to the Racah algebra rules:

<aSLIMiHes la'S'LFM™> = ZByq.5(SS)).
.<aSLIM | Ug® 1o'SLYM ><e [1c®) |1g >
where

2k 8
}

(k) = (12
<elie®rie>=-nt@+n {

and

<aSLIM 1 Ug®) ia'S'L'IM > = (1)’ M

(;{ : :4,) (~1) STk [ar41) (207 +1)]V2 X

I Ik K) | 1nfar?
X1,/ ¢ }<aSLIIU® {la'sL’>
In these expressions, the < |1C¥) |1> are the one elec-
tron reduced matrix elements (2 = 2 for d configuration),

B: o Bao Bss Bs o Bs 4
LiYF, :Nd®* [calc. 311. —-821. 1396 -10. 871.
exp. 401. —1008. 1230 30. 1074.
KY;F;o : Eu®* [calc. —953. —1396. 557. 829. 296.
exp. —528. —1358. 368. 476. —41.
BaFCl : Sm?* [calc. 11. -112. -37. 429. 226.
exp. -92. —-163. 67. 394. 200.

Table 4.  “Ab-initio” calculated and experimental crystal field parameters of rare earths in a quaternary symmetry case.

(from D. GARCIA and M. FAUCHERI)?.
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() are 3j-symbols and < 11UK)i|> are doubly reduced
matriz elements as tabulated by Nielson and Koster®.

One 3-j non-vanishing rule implies that -M+q+M'=0.
With respect to the symetry point group, this creates
subspaces to which the group irreducible representations
are associated. When the spin orbit coupling is omitted, the
crystal field potential can be translated on the | SM{LIM >
basis through the Clebsch-Gordan coefficients, and the
Byq easily related to Dy, D and Dy. The order of magnitu-
de of the cfp's is 15000 cm™! for 3d ions, to be compared
with 1000 cm™ for the 4f's (table 5).

II1.3 — The spin-orbit coupling

On the |aSLIM> basis, the spin-orbit coupling lifts
the term degeneracy. The matrix element is written as

<aSLIM | Hyo 12'S'LTM'>= £6 (J1') 6 (MM') (1)

LL'l

J+L+S'¢ 4 1/2
[R@+ D@+ DI { )

1<
<aSL Vi |1o's'L' >

where ¢ is the phenomenological parameter, £ = 2 for d ele-
ments, and V(1) is a double tensorial operator. The redu-
ced matrix elements are also found in the Nielson and
Koster tables.® The 25*'L label of the term becomes
28+11 1 for the free ion level, the sub-spaces are not affec-
ted. The order of magnitude of the spin-orbit parameter is
the same for 3d and 4f ions (table 5).

The full matrix we have to diagonalize is the sum of all
contributions:

<aSLIM IHla'S'L'I'M' > = <aSLIMIHg |a'S'L'IM' >
+<aSLIM |Hgela'S'L'IM > +

+<aSLIM [Hg la'S'L'FM' >+ . ...

After the diagonalization, the wavefunction is described
on the entire sub-space basis: |® >= I a;la SLIM>;
i

config. F, 3 Bk q
3N 70000. 500. - 15000.
4dN 50000. 1000. 20000.
5dN 20000. 2000. 25000.
4fN 70000. 1500. 1000.
5fN 50000. 2500. 2000.

Table S. Order of magnitide of the main parameters.

Units in ecm™! .

IV — PARAMAGNETIC SUSCEPTIBILITY AND
EFECTIVE MOMENT

The paramagnetic susceptibility is calculated by the Van
Vleck formula:

<<'13‘a|l-{|'~1>a>2
x=N?z —2 2
a KT
<® H|d, ><&, HI|D >
) s a b b a B,
b E, - Ey

in which N is the Avogadro number, § the Bohr magneton,
K the Boltzman constant, E and & the non perturbated
eigenvalues ‘'and wavefunctions, respectively. Here H is
the magnetic tensorial operator L+g.S. The sum runs over
thermally populated levels, according to Boltzman’s popula-
tion B,. In this expression, the matrix elements are calcu-
lated by using the Racah algebra rules. The effective
moment |le¢f is related to X by pegr = 2.828+/ XT. The
calculation is performed as a perturbation. Of course it
is always possible to introduce the operator H in the
secular determinant before diagonalisation (breaking the
remaining degeneracies of Kramers doublets), but this
is not necessary due to the smallness of the perturbation.

The expression is the sum of a temperature-dependent
diagonal term, and a temperature-independent off-diagonal
term, which reminds the classical Curie-Weiss law. The
off-diagonal term results from the second order perturba-
tion and has usually a small importance with the exception
of ground states with J=0. The sum runs over all other
states (b#a). Rare earths show that the calculation is in
good agreement with experiment.® The best proof is
obtained from the Europium ion case with 'F, as ground
state; the value of the plateau, depending only on the
off-diagonal term, is well reproduced” (fig. 1).

For d elements we consider the paramagnetic suscepti-
bility as a part of the simulation, completing the energy
level sequence. There are two possibilities:

1) to carry out a computational minimization between
calculated and experimental X (or uegf). The steps
are the followings: first a diagonalization of the secular
determinant with a starting set of parameters, next the
derivation of the obtained wavefunctions with respect
to phenomenological parameters, the minimization
of the equation yielding new parameters for a new
diagonalization, and so on... This procedure is rather
heavy and not safe, since the minimization procedure is
not linear. '

2) from approximate values of parameters (fitting roughly
the energy level scheme) we can operate by graphics.
This procedure was adopted.

Let us consider the case of the Co?* ion (d” configura-
tion). By varying B,, and By, in their possible values, we

obtain a map, one for each temperature (4, 77 and 300K
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Figure 1. Paramagnetic susceptibility of Eu,O3 (C-type). The
structure comprises two point sites of different symme-
try. For each, the cfp set is derived from the optical data.
Each site gives its own contribution to the paramagnetic
susceptibility. The sum corresponds to the expenment
(from Caro & Porcher 1986)7

in fig. 2). The map shows valleys, plateaux, cliffs and
pics. At first order, the effective moment varies with
temperature essentially by creation of valleys and modi-
fying the abruptness of the slopes. The high-spin = low-spin
transitions are clearly distinguished.

V — CALCULATION OF g

The g calculation is quite similar to that of the para-
magnetic susceptibility. The same L+g.S tensorial operator
is applied on the wavefunction of a level. The g value is
non vanishing only for Kramers doublets. The three compo-
nents of g have the form:

g= (<O [L+gSIP*>2 + < &* | L+geSIo™ >2 /2

In that expression, the two parts of the sum correspond
to the application of the wavefunction on itself <+, +>
and on its Kramers conjugated <+, —>. The sign is arbitra-
rily decided as the one of <+, +> matrix element for gy
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Figure 2. (d” configuration) By o =

=0.cm™! and £ =500 cm™!

and of <+, —> for g). Of course, the sign is not derived
from EPR measurements, but can be checked from MCD®.
When the symetry is at least binary, the non-zero rules for
3j-symbols give:

gy =< ®* I(L+geS)o 10* >

g = <® I(L+geS)s, &>

gx and gy are normalised combinations of the tensor com-



ponents 1. By varying the cfp’s, we can construct a series
of graphs corresponding to the g's of the ground level,
whose values are the most often cited in the literature.
The topology of the system is simpler: only plateaux and
falls. Fig. 3 shows a series of graphs with various B,, for
"the case of a quaternary symmetry of the Cu®* jon (d°).
B,o and B,y vary within their probable values. Three
plateaux appear, well separated, corresponding to the
different cases of irreducible representations for the ground
level. Naturally, the most interesting is the transition zones,
where situations are not clearly defined, with g values far
from those determined by applying the first order pertur-
bation theory. One transition zone of gy, corresponding
to an abrupt fall and to a pit on the curves, is not clearly
understood, occurring when 2E, and ?B irreducible
representations of the ground level cross. The position of
the plateaux, in terms of g values, is very dependent on
Bas (Dg), allowing the determination of its value. The
plateaux are not exactly horizontal, having a very small
slope. For example, a variation of 0,001 for g) (usual
precision of the measurement) corresponds to a variation
of 300 cm™ for the doublet energy and about 500 cm™*
for one of the linear cfp’s. This underlines the sensitivity
of the method.

o
-

o v"“ ;

[
“® U e ye e
PP L 4

v-,.
’

Figure 3. g values of Cu
constant is set to 500. cm'?

2* (d® configuration) for different B4 4 values. 5000. cm ™

VI-AN EXAMPLE OF SIMULTANEOUS SIMULATION
OF OPTICAL AND MAGNETO-OPTICAL DATA:
DIVALENT COPPER IN TETRAGONAL OR PSEUDO
-TETRAGONAL SYMMETRIES

The optical and magneto-optical properties of divalent
copper embedded in complexes have been extensively
studied since forty years. In a recent paper’, we considered
20 compounds, 13 with D4y, point symmetry for the
copper, 7 with a lower symmetry, treated as C,,, slightly
distorted from a quaternary symmetry. Two types of data
are considered: optical and g values. From absorption, 2,
sometimes 3, transitions are recorded. As usual, the lines
are wide and some positions are deduced by deconvolution
of broad bands. Some papers give data both at liquid
nitrogen and at room temperature. From EPR, two (for
D, symmetries) or three (for C,, symmetries) values of
g are measured. Moreover some rare magnetic susceptibi-
lity results are mentioned in the literature, i.e., some
values for the effective moment at room temperature.

We consider 4 parameters (6 for C,y): 3 (resp. 5) cfp’s
and the spin-orbit parameter. They have not the same
effect and their values strongly affect the composition
of the wavefunctions. .

(top) and 25000. cm™ (bottom). The spin-orbit coupling
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Under a quaternary symmetry, the d’° configuration
is split into two sub-spaces of Kramers doublets I's and
I, even when spin-orbit interactions are considered. The
solution of the secular determinant is equivalent to diago-
nalize two independant matrices whose dimensions are
3 for I'; and 2 for T's. The levels are easily related to the
classical d orbitals (when without spin-orbit) and the ket’s
composition defined. The effect of the spin-orbit interac-
tion is to split the doublet by some hundreds cm™'. The
positions of others levels are affected. Two transitions
become possible: By - E; and B; » E-.

From this series of simulations, interesting features
appear. The value of B,4 does not vary too much. This
parameter, directly proportional to Dy, is very dependent
on the planar ligands. On the contrary, the linear parame-
ters By, , vary more significantly along the series. They are
more the result of the axial ligand contribution. Moreover,
when low and room temperature spectra are known, they
vary much more (up to 30%) than B,4 (up to 3%). The
variation of the cfp’s due to the thermal contraction of
the network, is a well known phenomenon for the rare
earths. For the d electrons, the absolute magnitude of the
cfp's is larger and this temperature dependance can be one
reason for the high-spin = low-spin transitions and their
consequences on the magnetic properties.'® In all cases
cfp’s values are far from the cubic ratio. Only by looking
at the large value of B,q, it is evident that the procedure
which considers a cubic potential, and applies after a per-
turbative potential, is not precise enough. The starting
symmetry of the simulation has to be considered as near
as possible to the real point site symmetry.

The spin-orbit coupling constant varies significantly
from one compound to another. Not only, the spin-orbit
effect has to be taken into account in the simulation (and
we mean. not like a perturbation), but its average value
(530 cm™) is lowered with respect to the calculated free
ion one (830 cm™). The same occurs for the rare earths,
but not so much (typically 15%). It is noteworthy that
the ratio between experimental and calculated values
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corresponds more or less to the usual reduction factor®,
but without anisotropy. The parameter ¢ varies relatively
more around its average value (* 15%) than for the rare
earths (£ 3%). This variation can be understood in terms
of the nephelauxetic effect, i.e., bonding effects.!! The
same is also observed for the Slater integrals, Fy, more
particularly for F, (when they appear).
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